
 

 

Analogous Results of Operators on Complex and Real Vector Spaces 

 

Win Sandar
1
, Win Yu Yu Maw

22
 

 

Abstract 
 

In this paper, some analogous results on complex and real vector spaces are described. The 

structures of operator on complex and real vector spaces are analyzed. Cayley-Hamilton 

Theorems for operators on complex and real vector spaces are described. The major structure 

theorems about operators on complex and real vector spaces are expressed. 
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Introduction 

In this paper, we show that the results on real vector spaces are more complex than 

analogous results on complex vector spaces. Therefore, most of the results on complex vector 

spaces are proved first. The analogous results on real vector spaces are then proved. We define 

the characteristic polynomial of an operator on complex and real vector spaces. Suppose that V 

is a complex vector space and L L(V), the set of operators on V. We know that V has a basis 

with respect to which L has an upper-triangular matrix. Thus if L has dim V distinct 

eigenvalues, then each eigenvalues must appear exactly once on the diagonal of any upper-

triangular matrix of L. 

We prove that the characteristic polynomial of operator on compelx and real vector 

spaces must equal to zero. We describe that the proof uses the same idea as the proof of the 

analogous result in analyzing the structure of an operator on complex and real vector spaces. In 

analyzing the structure of an operator, the number of times an eigenvalue is repeated on the 

diagonal of an upper-triangulars matrix of L is independent of which particular basis we 

choose for a complex vector space. We find that the number of times a particular characteristic 

polynomial appears is independent of the choice of basis for a real vector space. These results 

will be our key tools in analyzing the structure of an operator on complex and real vector 

spaces. 

We also show that the major structure theorem about operators on complex vector 

space and the corresponding result on real vector space. 

Operators on Complex Vector Spaces 

Definition 1 

 Suppose V is a complex vector space and L  L(V). Any basis of V with respect to 

which L has an upper-triangular matrix of the form 

     M(L)

1

n

*

. .

0

 
 


 
  

            

(1) 
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Then the characteristic polynomial of L is given by 1 n(z )...(z ),   where 1 n,...,  denote 

the distinct eigenvalues of L. 

Proposition 1     

If a linear map L L(V), the set of operators on V and n is a nonnegative integer such 

that null 
n n 1L nullL ,  then 

0 1 n n 1 n 2nullL nullL ... nullL nullL nullL ... .       

Proof:       See     Dr Win Sandar,  (2019).  

Proposition 2 

 If L L(V), then 
dimV dimV+1 dimV+2null L null L null L ... .    

Proof:      See [Win Sandar, 2019].  

 

Corollary 1  

  Suppose L L(V) and   is an eigenvalue of L. Then the set of generalized 

eigenvectors of L corresponding to   equals null
dimV(L I) . 

Proof:       See [Win Sandar, 2019].  

 

Theorem 1 

 Let L  L(V) and F. Then for every basis of V with respect to which L has an 

upper-triangular matrix,   appears on the diagonal of the matrix of L precisely 
dimVdimnull(L I) times. 

Proof:    See [Win Sandar, 2019].               

 

 

Proposition 3  

If V is a complex vector space and L  L(V), then the sum of the multiplicities of all the 

eigenvalues of L equals dim V. 

Proof:    See [Win Sandar, 2019].  

 

Theorem 2  (Cayley-Hamilton theorem on a complex vector space) 

 Suppose that V is a complex vector space and L  L(V). Let q be the characteristic 

polynomial of L. Then q(L) 0.  

Proof: 

 Suppose that 1 n(v ,..., v ) is a basis of V with respect to which the matrix of L has an 

upper-triangular form (1). 

 We need only show that iq(L)v 0
 
for i 1, ..., n.  
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To do this, it sufficies to show that 

   1 i i(L λ I) ... (L λ I)v 0  
 
for i 1, ..., n.          

(6) 

By induction on i, suppose that i 1.  

We have 1 1 1 1L v λ v , giving by (6).  

Now suppose that 1 i n  and that 

    

1 1

1 2 2

1 i 1 i 1

0 (L λ I)v

(L λ I)(L λ I)v

(L λ I) ... (L λ I)v . 

 

  

  

 

Because M(L, 1 n(v ,..., v ) )is given by (1), we see that i i(L λ I)v span 1 i 1(v ,..., v ).  

Thus, by induction hypothesis, 1 i 1(L λ I) ... (L λ I)  applied to i i(L λ I)v gives 0. In other 

words, (6) holds, completing the proof.   

Proposition 4  

 If L  L(V) and the polynomial p𝒫(F), the set of all polynomials with coefficients 

in F,  then null p(L) is invariant under L. 

Proof.   See [Win Sandar, 2019].  

 

Theorem 3 (Major structure theorem on a complex vector space) 

 Suppose that V is a complex vector space and L  L(V). Let 1 n,...,  be the distinct 

eigenvalues of L, and let 1 nU ,...,U be the corresponding subspaces of generalized eigenvectors. 

Then 

(a) 1 nV U ... U ;    

(b) each iU
 
is invariant under L; 

(c) each  i iL I U is nilpotent. 

Proof:  See [Win Sandar, 2019].                       

 

 

Operators on Real Vector Spaces 

 For operators on real vector spaces, we need to define the characteristic polynomial of      

1-by-1 and 2-by-2 matrices with real entries. 
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Definition 2 

  The characteristic polynomial of a 2-by-2 matrix 
a c

b d

 
 
 

 is (x a)(x d) bc    for 

a real vector space. 

 

Proposition 5 

 Suppose L   L(V) and B is a matrix of L with respect to some basis of V. Then the 

eigenvalues of L are the same eigenvalues of B. 

Proof: See [Axler, S., 1997].                

 

 

 

Definition 3 

 A block upper-triangular matrix is a square matrix of the form 

      

1

n

B *

. ,

0 B

 
 
 
  

                                                                 

(7) 

where 1 nB ,...,B are square matrices lying along the diagonal, all entries below 1 nB ,...,B equal 0 

and the * denotes arbitrary entries. 

 

Theorem 4 

 Suppose V is a real vector space and L L(V). Then there is a basis of V with respect to 

which L has a block upper triangular matrix  

      

1

n

B *

. ,

0 B

 
 
 
  

 

where each Bi  is a 1-by-1 matrix or 2-by-2 matrix with no eigenvalues. 

Proof:   

 If dim V =1, the result holds. Consider dim V = 2. 

If L has an eigenvalue , then let v1  V be nonzero eigenvector. 

Extend (v1) to a basis (v1, v2) of V. Then L has an upper-triangular matrix with respect to this 

basis of the form 

   
a

.
0 b

 
 
 

  

 If L has no eigenvalues, then choose any basis (v1, v2) of V. Then the matrix of L with 

respect to this basis has no eigenvalues. Thus we have the desired conclusion when dim V = 2. 

 Suppose now that dim V > 2 and the desired result holds for all real vector spaces with 

smaller dimension. If L has an eigenvalue, let U be a one-dimensional subspace of V that is 

invariant under L.  
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 Choose any basis of U and let B1 denote the matrix of L|U with respect to this basis. If B1 

is a 2-by-2 matrix, then L has no eigenvalues and thus L|U has no eigenvalues.  

 Hence if B1 is a 2-by-2 matrix, then B1 has no eigenvalues. 

 Let W be any subspace of V such that 

   V = U  W. 

Since W has dimension less than the dimension of V, We will proof the induction hypothesis 

to L|W. However, W might not be invariant under L, i.e., L | W might not be an operator on W. 

 Define S  L(W) by Sw = PW,U (Lw) for w  W. 

Note that 

   Lw = PU,W(Lw) + PW,U(Lw) 

              = PU,W(Lw) + Sw 

for every w  W. 

 By induction hypothesis, there is a basis of W with respect to which S has a block upper-

triangular matrix of the form (7), where each is a 1-by-1 matrix of a 2-by-2 matrix with no 

eigenvalues. 

 Adjoin this basis of W to the basis of U chosen above, getting a basis of V. By using this 

result matrix of L with respect to this basis is a block upper-triangular matrix of the form (7), 

completing the proof.   

 

Proposition 6 

 Suppose that V is a real vector space with dimension 2 and L L(V) has no eigenvalues. 

Let p𝒫(R), be a monic polynomial with degree 2. Suppose A is the matrix of L with respect 

to some basis of V.  

(a) If p equals the characteristic polynomial of A, then p(L) 0.  

(b) If p does not equal the characteristic polynomial of A, then p(L)  is invertible. 

Proof: 

(a)  Suppose that Vis a real vector space with dimension 2 and L L(V). 

 Suppose that 
a b

c d

 
 
 

 is the matrix of T with respect to some basis 1 2(v ,v ) of V. 

 If b 0, then the matrix above is upper triangular. We know that L has characteristic 

polynomial (x a)(x d).   

 When applied to L, the polynomial (x a)(x d)  gives 0 even when b 0.  

  

 We have  

    
1 1

2 1

(L aI)(L dI)v (L dI)(L aI)v

(L dI) bv bcv

    

    

and 2 1 2(L aI)(L dI)v (L aI)cv bcv .     Thus  (L aI)(L dI)   not equal to 0 unless bc 0.  

However, the above equations show that (L aI)(L dI) bcI 0.     

Thus if p(x) (x a)(x d) bc,    then p(L) 0.  

(b)  Let q denote the characteristic polynomial of A and suppose p q.  

 We can write 
2

1 1p(x) x α x β   and 
2

2 2q(x) x α x β   for some 

1 1 2 2α , β , α , β .R  

 1 2 1 2p(L) p(L) q(L) (α α )L (β β )I.       

 If 1 2α α , then 1 2β β .  
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 Thus if 1 2α α ,  then p(L) is a nonzero multiple of the identity and hence is invertible, 

as desired. 

 If 1 2α α , then 1 2
1 2

1 2

β β
p(L) (α α ) L I ,

α α

 
   

   

which is an invertible operator because 

L has no eigenvalues. Thus, complete the proof.    

 The following proof uses the same ideas as the proof of the analogous result on 

complex vector spaces, Theorem 1. 

 

Theorem 5 

Suppose that V is a real vector space and L L(V). Suppose that with respect to some 

basis of V, the matrix of L is  

1

n

B *

. ,

0 B

 
 
 
    

where each iB is a 1-by-1 matrix or a 2-by-2 matrix with no eigenvalues. 

(a) If ,R then precisely dim null 
dimV(L I) of the matrices 1 nB ,...,B equal the 1-by-1 

matrix  [ ].  

(b) If , , R satisfy 
2 4 ,   then precisely  

2 dimVdim null (L L I)

2

 
 

of the matrices 1 nB ,...,B have characteristic polynomial equal to
2x αx β.   

Proof: 

We construct one proof that can be used to prove both (a) and (b) 

Let , ,  R with 
2 4 .    

Define p𝒫(R) by  

2

x λ, if we are trying to prove (a)
p(x)

x αx β, if we are trying to prove (b).


 

 
 

Let d be the degree of p. 

Thus d 1  if we are trying to prove (a) and d 2 if we are trying to prove (b). 

We will prove this theorem by induction on n. 

If n 1,  then dimV 1 ordimV 2  of which implies that the desired result holds. 

Assume that n > 1 and that the desired result holds when n is replaced with n 1.  

Let dimV m.  

Consider a basis of V with respect to which L has the block upper-triangular matrix (7). 
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Let iU  be the span of the basis vectors corresponding to iA . 

Thus i idimU 1, if A isa1-by-1matrixand i idimU 2, if A isa 2-by-2matrix.  

Let 1 n 1U U ... U .    

Clearly U is invariant under L and the matrix of L U with respect to the obvious basis is 

1

n 1

A *

. .

0 A 

 
 
 
  

 

Thus, by induction hypothesis, 

precisely 
1

d

 
 
 

dim null  
m

p L U of the matrices 1 n 1A ,...,A   
have characteristic 

polynomial p.                 

(8) 

The induction hypothesis gives (8) with exponent dim U instead of n, but we can 

replace dim U with n to get the statement above. 

Suppose n nu U .  

Let S L( nU ) be the operator whose matrix with respect to the basis corresponding to 

nU  equals nA .  

In particular, 
nn U ,U nSu P Lu .  

Now 
n nn U,U n U ,U nLu P Lu P Lu   

   U nSu ,    

where U denotes a vector in U and n nSu U .  

Thus applying to both sides of the equation above gives 

2 2

n U nL u S u .   

The last two equations show that 

n U np(L)u p(S)u   

for some U U.   

Thus iterating the last equation gives 

m m

n U np(L) u p(S) u              

(9) 

for some U U  and n np(S)u U .  

The proof of theorem breaks into two cases. 

First consider the case where the characteristic polynomial of nB does not equal p. 
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We will show that in this case 

 null 
mp(L) U.           (10) 

We know that null 
m mp(L) nullp(L | U) ,  and hence (8) will tell that precisely 

1
( )

d
dim 

null 
mp(L) of the matrices 1 nB ,...,B have the characteristic polynomial p, completing the proof 

in the case where the characteristic polynomial of nB does not equal p. 

Suppose that
mv null p(L) . We can write nv u u  where u U and n nu U .  

Using (9), we have 
m m m m m

n U n0 p(L) v p(L) u p(L) u p(L) u p(S) u ,      for some 

U U.   

Since the vectors 
mp(L) u  and U  

are in U and 
m

n np(S) u U , this implies that 

m

np(S) u 0.
 
 

However, p(S) is invertible, so nu 0.  

Thus v u U   completes the proof of (10). 

Now we consider the case where the characteristic polynomial to nB  equals p. 

We will show that 
m m

Udim null p(L) dim null p(L | ) d,           

(11) 

which along with (8) complete the proof. 

Using the formula for the dimension of the sum of two subspaces, we have 

m m mdim null p(L) dim (U null p(L) ) dim (U null p(L) ) dimU      

 
m m

Udim null p(L | ) dim (U null p(L) ) (n d).      

If 
mU null p(L) V,   then 

mdim (U null p(L) ) m,  which when combined with the 

formula above for dim null 
mp(L)  would give (11), as desired. 

To prove that 
mU null p(L) V,  suppose n nu U .  

Because the characteristic polynomial of the matrix of S equals p, we have p(S) 0.  Thus 

np(L)u U.  

Now  
m m 1 m 1

n n Up(L) u p(L) (p(L)u ) range p(L | )    

   
m

Urange p(L | ) .  

Thus we can choose u U  such that 
m m

n Up(L) u p(L | ) u.
 

Now 

m m m

n np(L) (u u) p(L) u p(L) u    

            =
m m

n Up(L) u p(L | ) u.  
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= 0. 

Thus 
m

nu u null p(L) ,  and hence n nu u (u u)   is in 
mU null p(L) .  

In other words,
m

nU U null p(L) .   Therefore 
m

nV U U U null p(L) ,     and 

hence 
mU null p(L) V,   completing the proof.  

 

Definition 4 

Suppose that V is a real vector space and L L(V). Suppose that with respect to some 

basis of V, L has a block upper-triangular matrix of the form 

1

n

B *

. ,

0 B

 
 
 
    

where each iB is a 1-by-1 matrix or 2-by-2 matrix with no eigenvalues. We define the 

characteristic polynomial of L to be the product of the characteristic polynomial of 1 nB ,...,B .  

For each i, define iq 𝒫(R) by  

i

i

i

x λ, if B  equals [λ],

q (x) a c
(x a)(x d) bc, if B  equals .

b d




  
    

    

 

Then the characteristic polynomial of L is 

1 mq (x) ... q (x). 

Clearly the characteristic polynomial of L has degree dim V.  

 

Proposition 7 

If V is a real vector space and L L(V), then the sum  of the multiplicities of all the 

eigenvalues of L plus the sum of twice the multiplicities of all the eigenpairs of L equals dim 

V. 

Proof: 

Suppose that V is a real vector space and L L(V). 

Then there is a basis of V with respect to which the matrix of  L. 

The multiplicity of an eigenvalue λ equals the number of times the 1-by-1 matrix [ λ ] appears 

on the diagonal of this matrix. 

The multiplicity of an eigenpair (α, β)
 

equals the number of times 
2x x   is the 

characteristic polynomial of a 2-by-2 matrix on the diagonal of this matrix.  

Since the diagonal of this matrix has length dim V, the sum of the multiplicities of all the 

eigenvaues of L plus the sum of twice the multiplicities of all the eigenpairs of L must equal    

dim V.  

(12) 
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The following proof uses the same idea as the proof of the analogous result on complex 

vector spaces, Theorem 2. 

 

Theorem 6   

Suppose that V is a real vector space and L L(V). Let q denote the characteristic 

polynomial of L. Then q(L) 0.  

Proof: 

Choose a basis of V with respect to which L has a block upper-triangular matrix of the 

form (7), where each iB is a 1-by-1 matrix of a 2-by-2 matrix with no eigenvalues. 

Suppose iU is the one-or two-dimensional subspace spanned by the basis vectors 

corresponding to iB .
 
Define iq  as in (13). 

To prove that q(L) 0, we need only show that iq(L) | U 0  for i   1, …, n. To do this, we 

will show that  

1 i iq (L) ... q (L) | U 0.    (14) 

We will prove (14) by induction on i. 

Suppose that i   1. 

From Proposition 6, we have 1 1q (L) | U 0  if and by giving (14) when i   1. 

Now suppose that 1 i m  and that 

1 1

1 2 2

1 i 1 i 1

0 q (L) | U

0 q (L)q (L) | U

0 q (L)q (L) | U . 







 

If iv U , then we see that i iq (L)v u q (S)v,   

where 1 i 1u U ... U     and S L( iU ) has characteristic polynomial iq . Because iq (S) 0 , 

the equation above shows that i 1 i 1q (L)v U ... U ,   where iv U .  

By induction hypothesis, 1 i 1q (L)...q (L) applied to i 1q (L)v 0  where iv U .  

Hence, complete the proof.  
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 The theorem below should be compared to Theorem 3, the corresponding result on 

complex vector spaces. The proof uses the same idea as the proof of the analogous result on 

complex vector spaces, Theorem 3. 

 

Theorem 7  (Main structure theorem on a real vector space) 

Suppose that V is a real vector space and L L(V). Let 1 nλ , ..., λ  be the distinct 

eigenvalues of L, with 1 nU , ..., U the corresponding sets of generalized eigenvectors. Let 

1 1 N N(α ,β ), ..., (α ,β )
 
be the distinct eigenpairs of L and let

2 dimV

i i iV null(L L I) .    

Then (a) 1 n 1 NV U ... U V ... V ;        

 (b) each iU  and each iV is invariant under L; 

         (c) each i i(L I) | U and each 
2

i i i(L L I) | V  is nilpotent. 

Proof:  

 From Proposition 7, we know that dim iU  equals the multiplicity of i as an eigenvalue 

of L and dim iV  equals twice the multiplicity of (α ,β )i i as an eigenpair of L. Thus 

1 n 1 NdimV dimU ... dimU dimV ... dimV .       

Let 1 n 1 NU U ... U V ... V .       

Since U is invariant under L, we can define S L(U) by S L | U.  

S has the same eigenvalues, with the same multiplicities, as L because all the 

generalized eigenvectors of L are in U, the domains of S. Similarly, S has the same eigenpairs, 

with the same multiplicities, as L. 

Thus applying Proposition 7, we get  

1 n 1 NdimU dimU ... dimU dimV ... dimV .       

This equation shows that dimV dimU.  

Because U is a subspace of V, this implies that V U.  By Proposition 6, we conclude 

that (a) holds. 

From Proposition 4, we get the proof of (b). Clearly (c) follows from (b) and the 

definition of nilpotent, completing the proof.  
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Conclusion 

The main achievement of this paper is that important results of operators on real vector 

spaces are more complex than the analogous results on complex vector spaces. 
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